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ABOUT ME

My name is Abhishek Singh, and I hold a Master’s degree in 

Machine Learning and Computer Vision from Queen Mary 

University of London. Currently, I am a Trainee in AI Drug 

Discovery at Hummingbird Bioscience, where I am exploring the 

application of AI-based computational methods to 

bioinformatics and protein design. 

I bring a diverse background, with experience in domains such 

as the F&B industry, AI consultancy, and music informatics. 

While my journey in bioinformatics and drug discovery is just 

beginning, I am excited to leverage my expertise in machine 

learning, data analytics, and computer vision to contribute to 

advancements in this field.
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RECENT WORK EXPERIENCE

At Hummingbird Bioscience, my work was focused on 
two key areas:

• Model exploration and set up different Machine 
Learning based models currently being developed for 
drug design and protein folding, which could 
potentially aid us in our antibody design and 
Binder/Mask Design projects.

• Secondly, after setting and deployment of these 
models in a computationally-efficient and user-
friendly manner was to use apply these methods to 
generate de-novo peptide binders that would bind to 
our target of interests.  
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ANTIBODY LOCKS
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Concept Introduction

Antibody locks are an innovative and effective approach designed 

to prevent/restrict the antibody activity until they are in close 

proximity to tumour cells, ensuring tumour-specific activation.

One common strategy is Spatial hindrance-based Ab locks, where a 

peptide lock is attached with a protease substrate linker to the 

antibody covering the antigen-binding sites. 

The linker is cleavable in the presence of tumour-associated 

proteases to expose the binding site.

•Mechanism:

A common design incorporates a helix coiled-coil structure:

• One helix protrudes from the heavy chain.

• Another helix extends from the light chain.

These helices are connected via a cleavable linker sensitive to 

tumour-secreted peptidases.



PROBLEM STATEMENT

Since our candidates from phage library will have variability in the CDR loops, while 
retaining the framework region, we chose to target the constant framework regions with 
our masks to bring about conformational changes to the CDR loops while blocking them.

Hummingbird is currently advancing into nanobody development using phage display library 
to design different candidates from a stable clinically validated nanobody.
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Unlike conventional antibodies, since nanobodies only have 

a single-chain, it makes the existing masking strategies, 

such as coiled-coil helix locks, developed for FAb regions, 

incompatible for them.

To tackle the above problem, we produced the strategy of 

Cleavable Linker-Based Locks attached to the N-terminus 

of our nanobody.



BINDER DESIGN PIPELINE

Backbone

RFDiffusion was used to 
generate mask designs 
targeting framework 4.

Sequence

ProteinMPNN trained on 

soluble proteins was used 

for inverse folding of 

RFDiff outputs.

Structure 
Prediction 
Filtering 

AF2 reduced MSA is used to 

predict the structures for the 

sequence output from MPNN.

The results are filtered based 

on RMSD and PAE Values

Liability 
Removal

Removal of designs with 

the potential risk of 

manufacturing liabilities.
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RFDiffusion
Sol-

ProteinMPNN

AF2-fast 

filtering

Liability de-

risking
MD Simulation

Validation

MDsimulation of the 

shortlisted designs 

for final validation 



RFDIFFUSION
Approach
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RFDiffusion is a powerful diffusion-based protein design model with various modes. In particular 

we experimented with the following modes:

1.Motif Scaffolding: This involves manipulating the contig map, which allows for precise control 

over the output by embedding specific structural motifs. It’s highly effective for guiding protein 

design.

2.Fold Conditioning: This mode enables control over the structural conformation of the output by 

conditioning the model to generate proteins with desired folding patterns. When used alongside 

contig map manipulations, this is particularly useful for Binder Design—designing proteins or 

nanobodies with specific target-binding capabilities.

For our nanobody masking approach, we utilized RFDiffusion’s contig map to generate peptides of 

varying lengths from the N-terminus of the nanobody. We instructed the model to ensure that the 

generated masks maintain continuous chains without introducing breaks. Additionally, we defined 

target hotspots, which act as guiding regions for the model, allowing the generated masks to 

preferentially bind to these target hotspots during the design process.Target 

Hotspot



RFDIFFUSION
Approach
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Since we plan to incorporate an unstructured cleavable linker connecting the mask and the 

nanobody's N-terminus, it is essential to identify the stable structural conformation of the 

nanobody-linker complex before proceeding with RFDiffusion generation. To achieve this, we opted 

to perform molecular dynamics (MD) simulations on the AF3 predicted nanobody-linker complex. 

This approach allows us to determine the most stable structural conformation of the linker, 

ensuring that it effectively guides the RFDiffusion model to generate masks targeting our 

designated hotspot and improves the confidence of the predicted models.

We took the MD simulated nanobody-linker complex as the input for RFDiffusion and generated 

>20,000 backbone designs of varying length between 20-80 residue length attached to the N-

terminus of the nanobody-linker complex. 

We used the base RFdiffusion model which often generates helical binders. These have high 

computational and experimental success rates when compared to the Beta model which gives 

other secondary structures in the outputs. From our observation, the Beta model outputs had low 

model confidence when compared to base model.
Target 

Hotspot



INVERSE FOLDING

Protein-MPNN

Since RFDiffusion generates only backbone structures as its outputs, an inverse folding 

mechanism is necessary to assign functional sequences to the designed binders. We selected 

Soluble MPNN (Sol-MPNN) for this purpose—a retrained version of Protein-MPNN optimized 

specifically for soluble proteins.

Sol-MPNN focuses on features such as hydrophilicity, solvent-accessible regions, charge 

distribution, and interactions with aqueous environments, ensuring that the designed proteins 

maintain high solubility upon expression. This minimizes aggregation risks and ensures 

functional stability in solution.

We passed all 20,000 RFDiffusion-generated designs through Sol-MPNN, and for each design, 

four sequences were generated at a sampling temperature of 0.1. To minimize risk, we 

adjusted the bias of the MPNN model to exclude cysteines from the predicted sequence 

outputs, as their presence increases the risk of disulfide bond formation and aggregation.
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AF2 PREDICTION FILTERING

• We used reduced MSA Alphafold 2 algorithm by decreasing the MSA 

cluster size and generating structures with random seed. All the 

outputs generated by Sol-MPNN were passed through AF2. The num of 

recycles for binder design was set to 3, which gave slightly better 

predictions . 

• The pipeline computes RMSD (Root Mean Square Deviation) to 

measure the structural deviation between the AF2-predicted models 

and the initial backbone structure generated by RFDiffusion and 

Predicted Aligned Error(PAE) which gives us the measure of how 

confident the AF2 is in it’s predicted structures.

• We used the above two metrics to filter and shortlist our candidates:

• We removed the designs with RMSD values > 5.

• We removed the designs that had PAE values > 10.

This filtering process ensured that only the most reliable and accurate designs were 
considered for further analysis.
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LIABILITY REMOVAL
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Objective

Minimize structural and functional risks in nanobody mask designs by addressing 

common liabilities that affect stability, expression, and performance.

Key Liabilities Addressed:

1.Consecutive Amino Acids: Removed sequences with 3+ identical residues (e.g., 

AAA, CCC) to prevent aggregation.

2.Excessive Unknown Residues (X): Limited sequences with high X content to 

maintain predictability and stability.

3.Post-Translational Modification (PTM) Motifs: Eliminated common motifs like NXS, 

NXT etc. linked to glycosylation and other undesired PTMs.

4.Isolated Cysteines: Removed isolated cysteines to avoid unintentional disulfide 

bonding that could destabilize structure.

The designs after the liability derisking steps were considered to be fit for manual 

inspection and MD Simulation.



MOLECULAR DYNAMICS SIMULATION

GROMACS

• As a final step in validation and filtering, we utilized MD simulations with 

GROMACS to evaluate the stability and dynamic behaviour of our nanobody 

designs. 

• Unlike AlphaFold 2, which is influenced by its training data, GROMACS employs a 

physics-based force field, offering an unbiased assessment of structural stability. 

By simulating the designs under realistic conditions, we observed their dynamic 

behaviour over time, focusing specifically on potential changes in the 

conformations of the CDR loops, which are critical for binding functionality. 

• This approach provided quantitative insights into any structural instabilities, 

guiding further refinement and shortlisting of the designs.
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The simulations for all the designs were ran for 50 ns (50,000 steps), with 

Charmm36 Forcefield, the final trajectory was converted into a single pdb (1000 

models) and was then analyzed and compared against the MD Simulation of 

the nanobody itself in the same conditions.

The following were considered for shortlisting:

• The designed mask throughout the trajectory had distance less than 5 Å 

from the framework 4

• The simulated protein had achieved a stabilized radius of gyration

• The simulated protein had high Root Mean Square Fluctuations in the CDR 

Regions

• Throughout the trajectory, the RMSD of the simulated protein's CDR3, when 

compared to the crystal structure's CDR3, was higher than the RMSD of the 

nanobody's CDR3 relative to the crystal structure. This indicates greater 

structural deviation in the simulated protein's CDR3 compared to the 

nanobody's CDR3.
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MD SIMULATION ANALYSIS



MD SIMULATION ANALYSIS
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• We can observe the above 

RMSF curve that the residues corresponding to 

the CDR regions undergo conformational changes 

under the presence of the mask.

• From the above plot we can infer that due to the 

presence of the mask, the CDR 3 RMSD is 

significantly higher when compared against the CDR 

3 RMSD of nanobody for the entire trajectory.

•  We also observed the trajectory around the frame 

950-1000 mark and inferred that around the frame 

980 the mask had no contacts with the framework 4. 

Hence, we notice the drop in the CDR 3 RMSD.



SUMMARY

To summarize, The pipeline developed by us was used for de-novo 

binder design to our choice of hotspots in Framework 4, covering 

CDR3. We generated more than 20,000 designs from RFDiffusion, 

then using Sol-MPNN generated 4 sequence for each design (80,000 

files) we then use AF2 Reduced MSA for structure prediction of the 

generated sequences and then filter the results based on their RMSD 

values and PAE. 

It was highly important for us to remove designs which could 

potentially cause aggregations, or could yield low expression, so we 

removed all the potential liability inducing designs. 

We shortlisted, 30 designs out of all the samples to proceed with 

MD Simulations, then selected 10 best designs for experimental 

testing which had significantly changed the CDR conformations and 

the masks were less than 5 Å to the framework region.
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THANK YOU

Abhishek Singh

+65 85026836

abhisteak@gmail.com
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